https://doi.org/10.4995/wrs.2018.7058 · Повний текст
Видання: World Rabbit Science, 2018, №2, с.179
Видавець: Universitat Politecnica de Valencia
Автори: Bohao Zhao, Yang Chen, Lin Mu, Shuaishuai Hu, Xinsheng Wu
Анотація
Skin is an important trait for Rex rabbits and skin development is influenced by many processes, including hair follicle cycling, keratinocyte differentiation and formation of coat colour and skin morphogenesis. We identified differentially expressed microRNAs (miRNAs) between the back and belly skin in Rex rabbits. In total, 211 miRNAs (90 upregulated miRNAs and 121 downregulated miRNAs) were identified with a |log<sub>2</sub> (fold change)|&gt;1 and <em>P</em>-value&lt;0.05. Using target gene prediction for the miRNAs, differentially expressed predicted target genes were identified and the functional enrichment and signalling pathways of these target genes were processed to reveal their biological functions. A number of differentially expressed miRNAs were found to be involved in regulation of the cell cycle, skin epithelium differentiation, keratinocyte proliferation, hair follicle development and melanogenesis. In addition, target genes regulated by miRNAs play key roles in the activities of the Hedgehog signalling pathway, Wnt signalling pathway, Osteoclast differentiation and MAPK pathway, revealing mechanisms of skin development. Nine candidate miRNAs and 5 predicted target genes were selected for verification of their expression by quantitative reverse transcription polymerase chain reaction. A regulation network of miRNA and their target genes was constructed by analysing the GO enrichment and signalling pathways. Further studies should be carried out to validate the regulatory relationships between candidate miRNAs and their target genes.
Список літератури
- Adamidi C. 2008. Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnol., 26: 407-415. https://doi.org/10.1038/nbt1394
https://doi.org/10.1038/nbt1394 - Adijanto J., Castorino J.J., Wang Z.X., Maminishkis A., Grunwald G.B., Philp N.J. 2012. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J. Biol. Chem., 287: 20491-
https://doi.org/10.1074/jbc.M112.354761 - https://doi.org/10.1074/jbc.M112.354761
https://doi.org/10.1074/jbc.M112.354761 - Ahmed M.I., Alam M., Emelianov V.U., Poterlowicz K., Patel A., Sharov A.A., Mardaryev A.N., Botchkareva N.V. 2014. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. J. Cell Biol., 207: 549-567. https://doi.org/10.1083/jcb.201404001
https://doi.org/10.1083/jcb.201404001 - Alexander M., Kawahara G., Motohashi N., Casar J., Eisenberg I., Myers J., Gasperini M., Estrella E., Kho A., Mitsuhashi S. 2013. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Diff., 20: 1194-1208. https://doi.org/10.1038/cdd.2013.62
https://doi.org/10.1038/cdd.2013.62 - Anders S. 2010. Analysing RNA-Seq data with the DESeq package. Mol. Biol., 43: 1-17.
- Andl T., Botchkareva N.V. 2015. MicroRNAs (miRNAs) in the control of HF development and cycling: the next frontiers in hair research. Exp. Dermatol., 24: 821-826. https://doi.org/10.1111/exd.12785
https://doi.org/10.1111/exd.12785 - Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT signals are required for the initiation of hair follicle development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3
https://doi.org/10.1016/S1534-5807(02)00167-3 - Antonini D., Russo MT., De Rosa L., Gorrese M., Del Vecchio L., Missero C. 2010. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J. Invest. Dermatol., 130: 1249-1257. https://doi.org/10.1038/jid.2009.438
https://doi.org/10.1038/jid.2009.438 - Athar M., Tang X., Lee J.L., Kopelovich L., Kim AL. 2006. Hedgehog signalling in skin development and cancer. Exp. Dermatol., 15: 667-677. https://doi.org/10.1111/j.1600-0625.2006.00473.x
https://doi.org/10.1111/j.1600-0625.2006.00473.x - Bartel D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5 - https://doi.org/10.1016/S0092-8674(04)00045-5
https://doi.org/10.1016/S0092-8674(04)00045-5 - Bashirullah A., Pasquinelli A.E., Kiger A.A., Perrimon N., Ruvkun G., Thummel C.S. 2003. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol., 259: 1-8. https://doi.org/10.1016/S0012-1606(03)00063-0
https://doi.org/10.1016/S0012-1606(03)00063-0 - Bommer GT., Gerin I., Feng Y., Kaczorowski AJ., Kuick R., Love RE., Zhai Y., Giordano TJ., Qin ZS., Moore BB. 2007. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol., 17: 1298-1307. https://doi.org/10.1016/j.cub.2007.06.068
https://doi.org/10.1016/j.cub.2007.06.068 - Braun C.J., Zhang X., Savelyeva I., Wolff S., Moll U.M., Schepeler T., Ørntoft T.F., Andersen C.L., Dobbelstein M. 2008. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res., 68: 10094-10104.
https://doi.org/10.1158/0008-5472.CAN-08-1569 - https://doi.org/10.1158/0008-5472.CAN-08-1569
https://doi.org/10.1158/0008-5472.CAN-08-1569 - Callis T.E., Chen J.F., Wang D.Z. 2007. MicroRNAs in skeletal and cardiac muscle development. Dna Cell Biol., 26: 219-225. https://doi.org/10.1089/dna.2006.0556
https://doi.org/10.1089/dna.2006.0556 - Caramuta S., Egyházi S., Rodolfo M., Witten D., Hansson J., Larsson C., Lui W.O. 2010. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol., 130: 2062-2070. https://doi.org/10.1038/jid.2010.63
https://doi.org/10.1038/jid.2010.63 - Chen C.H., Sakai Y., Demay M.B. 2001. Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology, 142: 5386-5386. https://doi.org/10.1210/endo.142.12.8650
https://doi.org/10.1210/endo.142.12.8650 - D'Juan T.F., Shariat N., Park C.Y., Liu H.J., Mavropoulos A., McManus M.T. 2013. Partially penetrant postnatal lethality of an epithelial specific MicroRNA in a mouse knockout. Plos One 8: e76634. https://doi.org/10.1371/journal.pone.0076634
https://doi.org/10.1371/journal.pone.0076634 - DeYoung M.P., Johannessen C.M., Leong C.O., Faquin W., Rocco J.W., Ellisen L.W. 2006. Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res., 66: 9362-9368. https://doi.org/10.1158/0008-5472.CAN-06-1619
https://doi.org/10.1158/0008-5472.CAN-06-1619 - Eckert R.L., Welter J.F. 1996. Transcription factor regulation of epidermal keratinocyte gene expression. Mol. Biol. Rep., 23: 59-70. https://doi.org/10.1007/BF00357073
https://doi.org/10.1007/BF00357073 - Enright A.J., Bino J., Ulrike G., Thomas T., Chris S., Marks D.S. 2004. MicroRNA targets in Drosophila. Gen. Biol., 5: R1-R1. https://doi.org/10.1186/gb-2003-5-1-r1
https://doi.org/10.1186/gb-2003-5-1-r1 - Fontanesi L., Scotti E., Allain D., Dall'Olio S. 2014. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Anim. Genet., 45: 248-255. https://doi.org/10.1111/age.12104
https://doi.org/10.1111/age.12104 - Fontanesi L., Vargiolu M., Scotti E., Latorre R., Pellegrini M.S.F., Mazzoni M., Asti M., Chiocchetti R., Romeo G., Clavenzani P. 2014. The KIT gene is associated with the English spotting coat color locus and congenital megacolon in Checkered Giant rabbits (Oryctolagus cuniculus). Plos One 9: e93750. https://doi.org/10.1371/journal.pone.0093750
https://doi.org/10.1371/journal.pone.0093750 - Fuchs E. 2007. Scratching the surface of skin development. Nature, 445: 834-842. https://doi.org/10.1038/nature05659
https://doi.org/10.1038/nature05659 - Georges S.A., Chau B.N., Braun C.J., Zhang X., Dobbelstein M. 2009. Cell cycle arrest or apoptosis by p53: are microRNAs-192/215 and-34 making the decision? Cell Cycle 8: 677-682. https://doi.org/10.4161/cc.8.5.8076
https://doi.org/10.4161/cc.8.5.8076 - Jackson S.J., Zhang Z., Feng D., Flagg M., O'Loughlin E., Wang D., Stokes N., Fuchs E., Yi R. 2013. Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development, 140: 1882-1891. https://doi.org/10.1242/dev.089649
https://doi.org/10.1242/dev.089649 - Katoh Y., Katoh M. 2008. Hedgehog signaling, epithelial-tomesenchymal transition and miRNA (review). Int. J. Mol. Med., 22: 271-275. https://doi.org/10.3892/ijmm_00000019
https://doi.org/10.3892/ijmm_00000019 - Kim K., Vinayagam A., Perrimon N. 2014. A rapid genomewide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep., 7: 2066-2077. https://doi.org/10.1016/j.celrep.2014.05.025
https://doi.org/10.1016/j.celrep.2014.05.025 - Kochegarov A., Moses A., Lian W., Meyer J., Hanna M.C., Lemanski L.F. 2013. A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos. J. Biomed. Sci., 20: 1. https://doi.org/10.1186/1423-0127-20-20
https://doi.org/10.1186/1423-0127-20-20 - Kozomara, A., Griffiths J. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 42: 68-73. https://doi.org/10.1093/nar/gkt1181
https://doi.org/10.1093/nar/gkt1181 - Kureel J., Dixit M., Tyagi A., Mansoori M., Srivastava K., Raghuvanshi A., Maurya R., Trivedi R., Goel A., Singh D. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis., 5: e1050. https://doi.org/10.1038/cddis.2014.4
https://doi.org/10.1038/cddis.2014.4 - Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9: 357-359. https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923 - Lim X., Nusse R. 2013. Wnt signaling in skin development, homeostasis, and disease. CSH Perspect. Biol., 5: a008029. https://doi.org/10.1101/cshperspect.a008029
https://doi.org/10.1101/cshperspect.a008029 - Liu Z., Xiao H., Li H., Zhao Y., Lai S., Yu X., Cai T., Du C., Zhang W., Li J. 2012. Identification of conserved and novel microRNAs in cashmere goat skin by deep sequencing. Plos One 7: e50001. https://doi.org/10.1371/journal.pone.0050001
https://doi.org/10.1371/journal.pone.0050001 - Mardaryev A.N., Ahmed M.I., Vlahov N.V., Fessing M.Y., Gill J.H., Sharov A.A., Botchkareva N.V. 2010. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J. 24: 3869-3881. https://doi.org/10.1096/fj.10-160663
https://doi.org/10.1096/fj.10-160663 - Mills A.A., Zheng B., Wang X.J., Vogel H., Roop D.R., Bradley A. 1999. p63 is a p53 hom*ologue required for limb and epidermal morphogenesis. Nature, 398: 708-713. https://doi.org/10.1038/19531
https://doi.org/10.1038/19531 - Mueller D.W., Rehli M., Bosserhoff A.K. 2009. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol., 129: 1740-1751. https://doi.org/10.1038/jid.2008.452
https://doi.org/10.1038/jid.2008.452 - Naeem H., Küffner R., Csaba G., Zimmer R. 2010. miRSel: Automated extraction of associations between microRNAs and genes from the biomedical literature. Bmc Bioinformatics, 11: 135. https://doi.org/10.1186/1471-2105-11-135
https://doi.org/10.1186/1471-2105-11-135 - Neilson J.R., Zheng G.X., Burge CB., Sharp P.A. 2007. Dynamic regulation of miRNA expression in ordered stages of cellular development. Gene. Dev., 21: 578-589. https://doi.org/10.1101/gad.1522907
https://doi.org/10.1101/gad.1522907 - Oda Y., Ishikawa M.H., Hawker N.P., Yun Q.C., Bikle D.D. 2007. Differential role of two VDR coactivators, DRIP205 and SRC-3, in keratinocyte proliferation and differentiation. J. Steroid Biochem., 103: 776-780. https://doi.org/10.1016/j.jsbmb.2006.12.069
https://doi.org/10.1016/j.jsbmb.2006.12.069 - Pan L., Liu Y., Wei Q., Xiao C., Ji Q., Bao G., Wu X. 2015. Solexa-
- Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus). Plos One: 10. https://doi.org/10.1371/journal.pone.0124583
https://doi.org/10.1371/journal.pone.0124583 - Rosenfield R.L., Deplewski D., Greene M.E. 2001. Peroxisome proliferator-activated receptors and skin development. Horm. Res. Paediat., 54: 269-274. https://doi.org/10.1159/000053270
https://doi.org/10.1159/000053270 - Schneider M.R. 2012. MicroRNAs as novel players in skin development, homeostasis and disease. Brit. J. Dermatol., 166: 22-28. https://doi.org/10.1111/j.1365-2133.2011.10568.x
https://doi.org/10.1111/j.1365-2133.2011.10568.x - Senoo M., Pinto F., Crum C.P., McKeon F. 2007. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129: 523-536. https://doi.org/10.1016/j.cell.2007.02.045
https://doi.org/10.1016/j.cell.2007.02.045 - Song B., Wang Y., Kudo K., Gavin E.J., Xi Y., Ju J. 2008. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin. Cancer Res., 14: 8080-8086. https://doi.org/10.1158/1078-0432.CCR-08-1422
https://doi.org/10.1158/1078-0432.CCR-08-1422 - Suh K.S., Mutoh M., Mutoh T., Li L., Ryscavage A., Crutchley J.M., Dumont R.A., Cheng C., Yuspa S.H. 2007. CLIC4 mediates and is required for Ca2+-induced keratinocyte differentiation. J. Cell Sci., 120: 2631-2640. https://doi.org/10.1242/jcs.002741
https://doi.org/10.1242/jcs.002741 - Tao Y. 2010. Studies on the quality of rex rabbit fur. World Rabbit Sci., 2: 21-24. https://doi.org/10.4995/wrs.1994.213
https://doi.org/10.4995/wrs.1994.213 - Tian X., Jiang J., Fan R., Wang H., Meng X., He X., He J., Li H., Geng J., Yu X. 2012. Identification and characterization of microRNAs in white and brown alpaca skin. BMC genomics 13: 1.
https://doi.org/10.1186/1471-2164-13-555 - https://doi.org/10.1186/1471-2164-13-555
https://doi.org/10.1186/1471-2164-13-555 - Vadlakonda L., Pasupuleti M., Pallu R. 2014. Role of PI3K-AKTmTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol., 3: 85. https://doi.org/10.3389/fonc.2013.00085
https://doi.org/10.3389/fonc.2013.00085 - van Amerongen R., Fuerer C., Mizutani M., Nusse R. 2012. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol., 369: 101-114. https://doi.org/10.1016/j.ydbio.2012.06.020
https://doi.org/10.1016/j.ydbio.2012.06.020 - Vousden K.H., Lane D.P. 2007. p53 in health and disease. Nat. Rev. Mol. Cell Biol., 8: 275-283. https://doi.org/10.1038/nrm2147
https://doi.org/10.1038/nrm2147 - Wang P., Li Y., Hong W., Zhen J., Ren J., Li Z., Xu A. 2012. The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. Mol. BioSyst., 8: 2924-2931. https://doi.org/10.1039/c2mb25228g
https://doi.org/10.1039/c2mb25228g - Whelan J.T., Hollis S.E., Cha D.S., Asch A.S., Lee M.H. 2012. Post‐transcriptional regulation of the Ras‐ERK/MAPK signaling pathway. J. Cell Physiol., 227: 1235-1241. https://doi.org/10.1002/jcp.22899
https://doi.org/10.1002/jcp.22899 - Xia H., Ooi L.L.P.J., Hui K.M. 2013. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology, 58: 629-641. https://doi.org/10.1002/hep.26369
https://doi.org/10.1002/hep.26369 - Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C. 1999. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398: 714-718. https://doi.org/10.1038/19539
https://doi.org/10.1038/19539 - Yu J., Peng H., Ruan Q., Fatima A., Getsios S., Lavker R.M. 2010. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 24: 3950-3959. https://doi.org/10.1096/fj.10-157404
https://doi.org/10.1096/fj.10-157404 - Yu J., Ryan D.G., Getsios S., Oliveira-Fernandes M., Fatima A., Lavker R.M. 2008. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. In Proc.: National Academy of Sciences 105: 19300-19305. https://doi.org/10.1073/pnas.0803992105
https://doi.org/10.1073/pnas.0803992105 - Zhang L., Nie Q., Su Y., Xie X., Luo W., Jia X., Zhang X. 2013. MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene, 519: 77-81. https://doi.org/10.1016/j.gene.2013.01.043
https://doi.org/10.1016/j.gene.2013.01.043 - Zhao Y., Wang P., Meng J., Ji Y., Xu D., Chen T., Fan R., Yu X., Yao J., Dong C. 2015. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a. Int. J. Mol. Sci., 16: 10921-10933. https://doi.org/10.3390/ijms160510921
https://doi.org/10.3390/ijms160510921
Публікації, які цитують цю публікацію
The comprehensive detection of miRNA, lncRNA, and circRNA in regulation of mouse melanocyte and skin development
Zhiwei Zhu, Yueyue Ma, Yuan Li, Pengfei Li, Zhixue Cheng, Huifeng Li, Lihuan Zhang, Zhongwei Tang
https://doi.org/10.1186/s40659-020-0272-1 ·
2020, Biological Research, №1
Scopus
WoS
Цитувань Crossref:11
Знайти всі цитування публікації
Дані публікації
Кількість цитувань | 0 |
Кількість джерел у списку літератури: | 63 |
Видання індексується в Scopus | Так |
Видання індексується в Web of Science | Так |